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Abstract. In this paper a new fast partitioning algorithm able to find either a globally
optimal partition or a locally optimal partition of the set A ⊂ Rn close to the global one
is proposed. The performance of the algorithm in terms of CPU time shows significant
improvement in comparison with other incremental algorithms. Since optimal partitions
with 2, 3, . . . clusters are determined successively in the algorithm, it is possible to calcu-
late corresponding clustering validity indexes for every number of clusters in a partition.
In that way the algorithm also proposes the appropriate number of clusters in a partition.
The algorithm is illustrated and tested on several synthetic and seismic activity data from
a wider area of the Republic of Croatia in order to locate the most intense seismic activity
in the observed area.
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1 Introduction
Clustering or grouping a data set into conceptually meaningful clusters is a well-studied
problem in recent literature. It has practical importance in a wide variety of applica-
tions such as earthquake investigation, pattern recognition, facility location problem, text
classification, machine learning, business, biology, agriculture, medicine, psychology, etc.
(Adelfio et al., 2012; Colombo et al., 1997; Durak, 2011; Iyigun, 2007; Morales-Esteban et al.,
2010; Pintér, 1996; Sabo et al., 2011, 2013).

Searching for an optimal partition in general is a complex global optimization problem
which can have several local and global minima (Grbić et al., 2012; Evtushenko, 1985;
Pardalos and Coleman, 2009; Pintér, 1996). Hence, numerous methods simplifying the
problem are proposed in literature, but they may not lead to a globally optimal partition.
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The second problem in cluster analysis that is often considered is determining the
appropriate number of clusters in a partition. If the number of clusters is not given in
advance, defining an appropriate number of clusters in a partition is a complex problem
(see e.g. Gan et al. (2007); Iyigun (2007); Kogan (2007); Vendramin et al. (2009)).

In our paper, a new incremental algorithm of searching for an optimal partition is
proposed. The algorithm represents a generalization of known incremental algorithms
(Bagirov and Ugon, 2005; Bagirov, 2008; Bagirov et al., 2011; Likas et al., 2003), and
uses the DIRECT algorithm for a global optimization of the Lipschitz continuous function
(Gablonsky, 2001; Finkel, 2003; Jones et al., 1993) in order to find a good initial ap-
proximation for the k-means algorithm. The algorithm locates either a globally optimal
partition or a locally optimal partition close to the global one.

The proposed algorithm is applied in earthquake investigation using the data freely
available on the website: http://earthquake.usgs.gov/earthquakes/eqarchives/epic/.
Only data that refer to a wider area of the Republic of Croatia have been extracted from
the database. Using the aforementioned algorithm, spatial locations of seismic activity
centers are detected.

The paper is organized as follows: In Section 2, some basic terms and facts about
data clustering are mentioned. In Section 3, a new algorithm of searching for an optimal
partition is constructed. A new algorithm is illustrated and compared with other similar
algorithms on several synthetic and empirical examples. In Section 4, the mentioned
algorithm is applied on the example of detecting spatial locations of seismic activity
centers in a wider area of the Republic of Croatia. Conclusions and future work are
discussed in Section 5.

2 Data clustering
The given data point set A = {ai ∈ Rn : i = 1, . . . , m}, where n ≥ 1 represents the
number of features in the data, should be partitioned into 1 ≤ k ≤ m nonempty disjoint
subsets (clusters) π1, . . . , πk. Such partition will be denoted by Π, and the set of all
partitions of the set A consisting of k clusters will be denoted by P(A; m, k).

Suppose also that a weight wi > 0 is associated to each data point. If d : Rn×Rn → R+,
R+ = [0, +∞⟩ is some distance-like function (see e.g. Kogan (2007); Teboulle (2007)),
which has at least positive definiteness property, then to each cluster πj ∈ Π we can
associate its center cj defined by

cj = c(πj) := argmin
x∈conv(πj)

∑
ai∈πj

wid(x, ai), (1)

where conv(πj) is a convex hull of the set πj. After that, by introducing the objective
function F : P(A; m, k) → R+ we can define the quality of a partition and search for the
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globally optimal k-partition by solving the following optimization problem:

argmin
Π∈P(A;m,k)

F(Π), F(Π) =
k∑

j=1

∑
ai∈πj

wid(cj, ai). (2)

Conversely, for a given set of centers c1, . . . , ck ∈ Rn, by applying the minimal distance
principle, we can define the partition Π = {π(c1), . . . , π(ck)} of the set A which consists
of the clusters:

π(cj) = {a ∈ A : d(cj, a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k,

where one has to take into account that every element of the set A occurs in one and
only one cluster. Therefore, the problem of finding an optimal partition of the set A can
be reduced to the following global optimization problem (GOP) (see e.g. Späth (1983);
Teboulle (2007))

argmin
c1,...,ck∈Rn

F (c1, . . . , ck), F (c1, . . . , ck) =
m∑

i=1
wi min

1≤s≤k
d(cs, ai), (3)

The solution of (2) and (3) coincides. Namely, it is easy to verify the following equalities

F (c⋆
1, . . . , c⋆

k) =
m∑

i=1
wi min

1≤s≤k
d(c⋆

s, ai) =
k∑

j=1

∑
ai∈π(c⋆

j )
wi min

1≤s≤k
d(c⋆

s, ai)

=
k∑

j=1

∑
ai∈π(c⋆

j )
wid(c⋆

j , ai) = F(Π⋆),
(4)

where Π⋆ = {π(c⋆
1), . . . , π(c⋆

k)}. Thereby, the objective function F is a symmetric function
which can have a large number of independent variables, it does not have to be either
convex or differentiable, and generally it may have at least k! local and global minima
(Grbić et al., 2012). Therefore, this becomes a complex GOP.

2.1 Choice of a distance-like function
Among many well-known distance–like functions (Durak, 2011; Kogan, 2007; Teboulle,
2007) we will mention only two which will be used in numerical experiments in Section 3.2
and in application to seismic activity in Section 4. In some concrete applications, the
choice of the corresponding distance–like function is very important.

The most popular distance–like function is the Least Squares (LS) distance–like func-
tion dLS : Rn × Rn → R+, dLS(x, y) = ∥x − y∥2

2. In this case, the cluster center is called
the centroid and it can be simply obtained as a weighted arithmetic mean

cj = argmin
x∈conv(πj)

∑
ai∈πj

dLS(x, ai) = 1
Wj

∑
ai∈πj

wiai, Wj =
∑

ai∈πj

wi. (5)
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Centroid cj has the property that the weighted sum of squares of Euclidean distances of
points from the cluster πj to its center cj is minimal. From the physical point of view,
the centroid cj can be understood as a center of gravity of the set A with weights wi > 0
of its points.

Mahalanobis distance–like function dM : Rn ×Rn → R+, dM(x, y) = (x − y)S(x − y)T ,
(S > 0 symmetric positive definite matrix), takes into consideration the correlations
within a data set (Durak, 2011). The matrix S is a symmetric positive definite covariance
matrix. It can be easily seen that the cluster center is the same when using the LS-
distance–like function. Note also that the Mahalanobis distance–like function becomes
an LS-distance–like function if S is the identity matrix and both of these distance–like
functions have a symmetry property, but they do not satisfy the triangle inequality.

3 Searching for a globally optimal partition
Given is a data points set A ⊂ [α, β] ⊂ Rn, where α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Rn

and [α, β] = {x ∈ Rn : αi ≤ xi ≤ βi}, thereby to each data point ai ∈ A a weight wi > 0 is
associated. The goal is to determine a partition Π⋆ = {π⋆

1, . . . , π⋆
k} with centers c⋆

1, . . . , c⋆
k

as a solution of GOP (2), or equivalently (3).
Since our objective function (3) is a Lipschitz continuous function (Pintér, 1996;

Sabo et al., 2013), there are numerous methods for solving this GOP (Evtushenko, 1985;
Floudas and Gounaris, 2009; Neumaier, 2004; Pintér, 1996). One of the most popular al-
gorithms for solving a GOP for the Lipschitz continuous function is the DIRECT (DIviding
RECTangles) algorithm (Finkel, 2003; Gablonsky, 2001; Jones et al., 1993). Because of
the symmetry property od the function F there are at least k! solutions of this problem.
That was a motive for developing a very efficient special version of the DIRECT algorithm
for symmetric functions in Grbić et al. (2012). Complexity of this problem is specially
emphasized if the number of features n or the number of data points m is large.

Instead of searching for the GOP, various simplifications are often proposed in the
literature that would find a partition for which we usually do not know how close it
is to the globally optimal one. The most popular algorithm of searching for a locally
optimal partition is a well-known k-means algorithm (see e.g. Kogan (2007); Rizman-Žalik
(2008); Späth (1983); Teboulle (2007)). If we have a good initial approximation, this
algorithm can provide an acceptable solution (Volkovich et al., 2007). In case we do not
have a good initial approximation, the algorithm should be restarted with various random
initializations, as proposed by (Leisch, 2006).

3.1 A new algorithm
Our paper proposes a new efficient algorithm of searching for an optimal partition as
a natural generalization of different incremental algorithms (Likas et al., 2003; Bagirov,
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2008; Bagirov et al., 2011). For that purpose we define the sequence of objective functions

Fk : Rn × · · · × Rn︸ ︷︷ ︸
k

→ R+, Fk(c1, . . . , ck) =
m∑

i=1
wi min{d(c1, ai), . . . , d(ck, ai)}. (6)

For k = 1, the function F1 attains its global minimum at the point c⋆
1 ∈ [α, β] given

by (1).
For k > 1, we determine an optimal k-partition with centers c⋆

1, . . . , c⋆
k by the following

incremental algorithm.

Algorithm 1. (Searching for an optimal k-partition)

Step 1: Let ĉ1, . . . , ĉk−1 be the centers obtained in the previous step as an approximation
of a global minimizer of the function Fk−1 and let

Fk−1(ĉ1, . . . , ĉk−1) =
m∑

i=1
wiδ

i
k−1, δi

k−1 = min{d(ĉ1, ai), . . . , d(ĉk−1, ai)}, (7)

Φk(c) := Fk(ĉ1, . . . , ĉk−1, c) =
m∑

i=1
wi min{δi

k−1, d(c, ai)}. (8)

Step 2: By using the DIRECT algorithm for global optimization determine

ĉk ∈ argmin
c∈[α,β]

Φk(c) (9)

Step 3: By using the k-means algorithm with initial approximations ĉ1, . . . , ĉk determine
new centers c⋆

1, . . . , c⋆
k.

Remark 1. Note first that the objective function value decreases by increasing the cluster
number (see e.g. (Späth, 1983)). Therefore,

F1(c⋆
1) ≥ F2(ĉ1, ĉ2) ≥ F2(c⋆

1, c⋆
2) ≥ · · · ≥ Fk(ĉ1, . . . , ĉk) ≥ Fk(c⋆

1, . . . , c⋆
k),

and, according to Bagirov and Ugon (2005), the maximum number of clusters kmax that
makes sense to be calculated using Algorithm 1 is determined by

F ⋆
kmax−1 − F ⋆

kmax

F ⋆
1

< ϵ, (10)

for some small ϵ > 0 because the relative reduction of the objective function value for
k ≥ kmax is less than ϵ.

The important advantage of all incremental algorithms of searching for an optimal
partition lies in the fact that we get an optimal partition for each k ≤ kmax, which makes
it possible to decide on the appropriate number of clusters in a partition by using various
well-known indexes (see Section 4.1).
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Unfortunately, it cannot be asserted that the proposed algorithm gives a globally
optimal k-partition, but numerous calculations conducted in the next section show that
the partition obtained by Algorithm 1 is either a globally optimal partition or a locally
optimal partition close to the global one and is therefore acceptable in applied research.
In the following, the partition obtained by Algorithm 1 will be simply called an optimal
partition.

In comparison with other similar methods, the advantage of Algorithm 1 is specially
manifested in significantly shorter CPU-time. As shown in several illustrative exam-
ples below, the function Φk can have several local and global minima and in Step 2
we choose one of the global minimizers. This is the basic difference and advantage of
the proposed algorithm compared to other incremental algorithms. Furthermore, it is
known that in some cases the DIRECT algorithm is not efficient enough (Grbić et al.,
2012; Sergeyev and Kvasov, 2011). However, that is not the case with our problem solv-
ing since the solution obtained by the DIRECT algorithm in Step 2 is used only as an initial
approximation in Step 3 and it is not necessary to request a high accuracy. This efficiency
of Algorithm 1 is also confirmed by demanding calculations in earthquake investigations.

Instead of solving the GOP in Step 2, several different approaches can be found in
literature. The worst possibility (Likas et al., 2003) is instead of ĉk in Step 2, to take the
elements from set A successively and to execute the k-means algorithm for each of them.
In this procedure the solution (c⋆

1, . . . , c⋆
k) is a k-means solution with the smallest objective

function value. However, if the number of data points m is large (as, for example, in case
of earthquake investigation - see Section 4), then CPU-time can be unacceptable.

The second possibility (Likas et al., 2003; Bagirov, 2008) is to find aj ∈ A for which the
difference ∆(aj) := Fk−1(ĉ1, . . . , ĉk−1) − Φ(aj) will be the largest and to choose precisely
that aj for ĉk. A more detailed description of this method for the case of data with weights
follows.

Let I = {1, . . . , m} be the set of all indices. First, for some aj ∈ A we define disjoint
sets of indices

I
(j)
1 = {i ∈ I : δi

k−1 ≤ d(aj, ai)}, I
(j)
2 = {i ∈ I : δi

k−1 > d(aj, ai)}, (11)

where δi
k−1 is given by (7). Then

∆(aj) =
m∑

i=1
wiδ

i
k−1 −

∑
i∈I

(j)
1

wiδ
i
k−1 −

∑
i∈I

(j)
2

wid(aj, ai)

=
∑

i∈I
(j)
2

wiδ
i
k−1 −

∑
i∈I

(j)
2

wid(aj, ai) =
∑

i∈I
(j)
2

wi

(
δi

k−1 − d(aj, ai)
)

.

Since
m∑

i=1
wi max{0, δi

k−1 − d(aj, ai)} =
∑

i∈I
(j)
2

wi

(
δi

k−1 − d(aj, ai)
)

= ∆(aj),
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the largest difference ∆(aj) is obtained for the aj ∈ A for which a maximum of

∆(aj) =
m∑

i=1
wi max{0, δi

k−1 − d(aj, ai)}. (12)

is attained. This approach in literature (Likas et al., 2003; Bagirov, 2008; Bagirov et al.,
2011) is called the Global k-means Algorithm (GKM).

The third possibility considered in (Bagirov and Ugon, 2005; Bagirov and Yearwood,
2006) is the application of the discrete gradient method (GRAD) for finding the minimum
of the auxiliary function Φk. Since this is a local method, which is very sensitive to the
choice of the initial approximation, these papers pay special attention to the choice of a
convenient initial approximation.

The papers (Bagirov, 2008; Bagirov et al., 2011) abandon the idea of applying the
discrete gradient method. Instead, they carry out a detailed analysis of sets

(
I

(j)
2 , j ∈ I

)
and on the basis of that propose a good initial approximation for the k-means algorithm.
This method shows some very good performances, but requires relatively large CPU-time.

3.2 Numerical experiments and illustrations
The proposed Algorithm 1 will be illustrated on several examples and compared with the
GKM-algorithm and the GRAD-algorithm which incorporates GKM for finding the initial
approximation.

Example 1. In the square [0, 1]2 ⊂ R2, k = 7 points C1, . . . , Ck, are randomly chosen,
which make vector c = (C1, . . . , Ck) ∈ R7×2. In the neighborhood of point Cj ∈ [0, 1]2, mj

random points are generated by using binormal random additive errors with mean vector
0 ∈ R2 and the covariance matrix σ2I, σ2 = 0.1. Thereby, mj are random integers from
[10, 50]. In this way, we obtained a data point set A with m = ∑7

j=1 mj random points.
By using the LS-distance-like function and applying GKM, GRAD and Algorithm 1

we search for a reconstruction vector of centers ĉ = (ĉ1, . . . , ĉk) ∈ R7×2. We define the
error of reconstruction by using the Hausdorff distance

d̂H := dH(c, ĉ) = max{max
r

min
s

∥cr − ĉs∥2, max
s

min
r

∥cr − ĉs∥2}. (13)

Algorithm d̂H < .1 .1 ≤ d̂H < .2 .2 ≤ d̂H < .3 .3 ≤ d̂H CPU (min)

GKM 49 39 11 1 20:04
GRAD 51 37 11 1 20:42
Algorithm 1 51 35 14 - 03:41

Table 1: Frequency of errors and the corresponding CPU-time for 100 experiments
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We will repeat this experiment 100 times with different random data. The results
presented in Table 1 show that all three methods reconstruct cluster centers well enough,
but the CPU-time of Algorithm 1 is significantly shorter.

Example 2. As an illustration, we observe a chosen experiment from Example 1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) GKM

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) GRAD

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c) Algorithm 1

Figure 1: Reconstruction of the points c1, . . . , c7

Fig. 1 shows original points C1, . . . , Ck (red points), data (black points), initial ap-
proximation ĉ1, . . . , ĉk (light blue points) and reconstructed centers c⋆

1, . . . , c⋆
k (blue points)

with clusters for every method. Table 2 shows Hausdorff distances of points ĉ1, . . . , ĉk and
points c⋆

1, . . . , c⋆
k to the original points C1, . . . , Ck with corresponding objective function

values for every method. Centers c⋆
1, . . . , c⋆

k and corresponding objective function values
do not differ substantially with all three algorithms, but the CPU-time for Algorithm 1
is significantly shorter.

Method dH(c, ĉ) F (ĉ) dH(c, c⋆) F (c⋆) CPU-time (sec)

GKM 0.221342 3.2576 .216829 3.12839 8.52
GRAD 0.216829 3.25725 .216829 3.12839 8.78
Algorithm 1 0.153964 3.28666 .093465 3.10509 1.57

Table 2: Details of a chosen experiment from Example 1

Example 3. We will compare Algorithm 1 with GKM and GRAD on the data set A3

(|A3| = 3184) with weights wi = Mi ≥ 3 from Section 4.2 by using the Mahalanobis
distance-like function. We chose ĉ1 = (18, 43) as the initial center. Table 3 shows the
flow of the iterative process for all three algorithms. All algorithms will be terminated for
kmax = 14 according to (10) because F ⋆

14−F ⋆
13

F ⋆
1

< .005. As one can see, centers c⋆
1, . . . , c⋆

13
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GKM GRAD Algorithm 1
k F (ĉ) CPU F (c⋆) CPU F (ĉ) CPU F (c⋆) CPU F (ĉ) CPU F (c⋆) CPU

2 14576.7 4:12 14158.7 5:14 14455.2 4:12 14158.7 4:14 14455.3 0:04 14158.7 0:06
3 8995.7 5:55 5846.0 7:14 8995.2 5:56 5846.0 5:57 8995.4 0:06 5846.0 0:07
4 4861.0 7:34 4510.1 9:16 4858.7 7:35 4510.1 7:42 4858.7 0:09 4510.1 0:16
5 3768.1 9:14 3223.7 11:20 3767.5 9:15 3223.7 9:16 3767.6 0:11 3223.7 0:13
6 2687.3 11:12 2376.7 13:31 2685.7 11:12 2376.7 11:16 2686.1 0:12 2376.7 0:16
7 2137.6 12:48 1996.0 15:33 2137.3 12:49 1996.0 12:51 2137.3 0:15 1996.0 0:17
8 1804.2 14:44 1769.4 17:21 1803.7 14:45 1769.4 14:47 1803.6 0:19 1769.4 0:22
9 1619.7 15:56 1581.5 19:22 1619.4 15:57 1581.5 15:59 1619.4 0:19 1581.5 0:22

10 1454.9 17:58 1408.3 21:17 1454.6 17:59 1408.3 18:01 1463.6 0:18 1408.3 0:20
11 1294.0 19:57 1199.6 23:57 1293.8 19:58 1199.6 20:04 1303.8 0:21 1271.8 0:24
12 1101.4 21:49 1071.9 25:21 1097.4 21:51 1071.9 21:53 1161.7 0:25 1068.1 0:30
13 981.3 23:22 941.0 27:24 978.9 23:22 941.0 23:26 966.3 0:27 940.9 0:30

2:44:41 3:16:50 2:44:43 2:45:26 0:03:06 0:03:46

Table 3: Comparison of algorithms of searching for k = 2, . . . , 13 spatial locations of
seismic activity centers

and corresponding objective function values for different algorithms differ a bit only in the
last few iterations, but the CPU-time for Algorithm 1 is significantly shorter.

As an illustration, let us look closely at k = 5. The known centers ĉ1, . . . , ĉ4 in Fig. 2a
are shown on ContourPlot of the function Φ5(c) = F (ĉ1, . . . , ĉ4, c) with the red dots. By
solving the GOP in Step 2 we get the point ĉ5 (green point in Fig. 2a). After that, by
using the k-means algorithm (Step 3), we get the optimal solution c⋆ = (c⋆

1, . . . , c⋆
5) (green

points in Fig. 2b).

13 14 15 16 17 18 19 20

42

43
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45

46

47

(a) Initial approximations

ĉ5 ĉ1
ĉ2

ĉ3

ĉ4

13 14 15 16 17 18 19 20
42

43

44

45

46

47

(b) k-means optimized centers

Figure 2: Searching for the global minimizer of the function Φ5
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4 Detection of spatial locations of seismic activity
centers

Earthquakes usually come without any warning, they can destroy entire cities in just a few
seconds and kill or severely injure a large number of people and cause enormous property
damage. Therefore, a lot of attention is paid to the study of earthquakes.

There are several publicly available databases of earthquakes that occurred in the past
around the world. For example, the web site
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
contains data on earthquakes around the world since 1973. The following data are given
for each earthquake that occurred in that period of time:

Year / Month / Day / Orig.Time/Latitude(φi)/Longitude(λi)/ Depth / Magnitude (wi)

Based upon this data, the set

AM = {ai = (λi, φi) ∈ R2 : Lλ ≤ λi ≤ Uλ, Lφ ≤ φi ≤ Uφ, Mi ≥ M},

which contains earthquake locations determined by longitude λi ∈ [Lλ, Uλ], latitude φi ∈
[Lφ, Uφ] and magnitude Mi ≥ M > 0 is constructed. The set AM of the data location
with the weights wi = Mi should be partitioned into 1 ≤ k ≤ m clusters. Thereby,
an appropriate number of clusters should be taken into consideration. Centers of these
clusters will represent centers of seismic activity in the neighborhood of which stronger
earthquakes most frequently occurred in this period in the area under consideration.

If the rectangle [Lλ, Uλ]×[Lφ, Uφ] is relatively small (such that relative distances in this
rectangle do not significantly differ from relative distances in the corresponding rectangle
in the Gauss-Krüger coordinate system), then searching for the optimal partition can
be carried out directly with the data from the set AM . Else, it would be necessary to
transform the data set in the Gauss-Krüger coordinate system.

An important application of cluster analysis in earthquake investigation is forecasting
the location, time and magnitude of an earthquake in future. Knowing the centers of
seismic activity is important when making a decision on choosing the location for building
major construction facilities (Modirzadeh et al., 2012). The forecast of the occurrence and
the maximum magnitude of a possible earthquake is one of the most difficult problems
in seismic hazard assessment. Naturally, forecasts based only on a posteriori criteria
are not representative enough, but they can indicate seismic hazard. (Cho et al., 2010;
Colombo et al., 1997; Holliday et al., 2006; Morales-Esteban et al., 2010).

4.1 Determining the appropriate number of clusters in the par-
tition

Automatically determining the number of clusters has been one of the most difficult
problems in data clustering processes. In some cases, the number of clusters in a partition
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is determined by the nature of the problem itself. If the number of clusters in a partition
is not given in advance (as is the case with the problem under consideration), then it is
natural to search for an optimal partition which consists of clusters that are as compact
and well-separated as possible. Thereby, choosing a large number of clusters does not
necessarily imply better classifications. There are many different approaches to solving
this problem in the literature (see e.g. Gan et al. (2007); Iyigun (2007); Kogan (2007);
Vendramin et al. (2009)).

The observed data on earthquake activity are naturally grouped as extended and
not spherical units. For that purpose we will use a Mahalanobis distance-like func-
tion (Durak, 2011) and the following validity indexes for determining the appropriate
number of clusters in a partition: Davies-Bouldin (Davies and Bouldin, 1979), Silhouette
With Criterion and Simplify Silhouette Width Criterion (Kaufman and Rousseeuw, 2005).
These indexes are proposed as most appropriate in similar situations (Adelfio et al., 2012;
Morales-Esteban et al., 2010; Vendramin et al., 2009).

Davies - Bouldin Index (DB) for the optimal partition with k clusters is defined as

DB(k) = 1
k

k∑
j=1

max
s ̸=j

V (π⋆
j )+V (π⋆

s )
d(c⋆

j ,c⋆
s) , (14)

where V (π⋆
j ) is a variance of the cluster π⋆

j given by

V (π⋆
j ) = 1

Wj

∑
as∈π⋆

j

wsd(c⋆
j , as), Wj =

∑
as∈π⋆

j

ws.

More compact and better separated clusters in an optimal partition will result in a lower
DB index.

Silhouette Width Criterion (SVC) is very popular in cluster analysis and applications.
For the optimal partition with k clusters π⋆

1, . . . , π⋆
k the SVC is defined as follows: For

each ai ∈ A ∩ π⋆
r we calculate the numbers

αir = 1
Ωr

∑
as∈π⋆

r

wsd(ai, as), βir = min
q ̸=r

1
Ωq

∑
as∈π⋆

q

wsd(ai, as), Ωp =
∑

as∈π⋆
p

ws, (15)

and the corresponding index is then defined as

SWC(k) = 1
m

m∑
i=1

βir − αir

max{αir, βir}
. (16)

More compact and better separated clusters in an optimal partition will result in a greater
SWC number.

Simplify Silhouette Width Criterion (SSC) uses the distances of elements ai ∈ A ∩ π⋆
r

to cluster centers c⋆
1, . . . , c⋆

k instead of the average value from (15)

αir = d(ai, c⋆
r), βir = min

q ̸=r
d(ai, c⋆

q), SSC(k) = 1
m

m∑
i=1

βir − αir

max{αir, βir}
. (17)
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4.2 An application to seismic activity in a wider area of the
Republic of Croatia

We will apply Algorithm 1 to determining locations of the most intense seismic activity
in a wider area of the Republic of Croatia. In this case the data set

A3 = {ai = (λi, φi) ∈ R2 : 13 ≤ λi ≤ 20, 42 ≤ φi ≤ 47, wi = Mi ≥ 3}, (18)

consists of locations in this area that have been affected by the earthquake of magnitude
at least 3 since 1973. One can find 10 018 data in the database for this area, whereby
m = 3184 of them refer to earthquakes of magnitude greater than or equal to 3. Locations
of these earthquakes are denoted in Fig. 3a, where high magnitude earthquakes are marked
by bigger black dots.

14 15 16 17 18 19 20

43

44

45

46

47

(a) Earthquake locations

-4 -2 2 4

-6

-4

-2

2

4

6

(b) Burn diagram

WinterSpring

Summer Autumn

Figure 3: Locations in a wider area of the Republic of Croatia affected by the earthquake of
magnitude at least 3 since 1973 and the corresponding moments in a year

Fig. 3b shows time distribution of seismic moments throughout the year for this data
set using the so-called Burn diagram (see Parajka et al. (2010)), i.e. the set

B = {wi(cos ti, sin ti) ∈ R2 : ti = 2πTi(mod 2π) ∈ [0, 2π], i = 1, . . . , m},

where Ti ∈ [0, 39] are time moments inside 39 successive years since 1973. This diagram
also confirms that seismic moments can be considered as stationary Poisson processes
with a fixed occurrence rate over time (Cho et al., 2010; Stipčević et al., 2011).

The data point set A3 given by (18) will be partitioned into several clusters by using
the Mahalanobis distance-like function dM : R2 × R2 → R+ (Durak, 2011)

dM(x, y) = (x − y)Σ−1(x − y)T , (19)

Σ = 1
W


m∑

i=1
wi(λi − λ̄)2

m∑
i=1

wi(λi − λ̄)(φi − φ̄)
m∑

i=1
wi(λi − λ̄)(φi − φ̄)

m∑
i=1

wi(φi − φ̄)2

 =
[

4.6646 −1.3706
−1.3706 1.8571

]
,
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where Σ is a covariance matrix and λ̄ = 1
W

m∑
i=1

λi = 16.2268, φ̄ = 1
W

m∑
i=1

φi = 43.7542,

and W =
m∑

i=1
wi = 11418.4. By using Algorithm 1 we calculate the weighted Mahalanobis

optimal partition (WM-optimal partition) for k = 2, . . . , 14 (see Example 3).
In each iteration of Algorithm 1, according to Subsection 4.1, the corresponding

Davies-Bouldin (DB) index, Silhouette Width Criterion (SWC) and Simplify Silhouette
Width Criterion (SSC) are calculated after Step 3. Fig. 4 shows graphs of these indexes
for a WM-optimal partition obtained by Algorithm 1. Clustering validity indexes show
that the partition with k = 3 and k = 13 clusters achieves relatively more compact and
well-separated clusters.

0 2 4 6 8 10 12 14
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0.5
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0.60
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0.70

0 2 4 6 8 10 12 14

0.65

0.70

0.75

0.80

(a) DB (b) SWC (c) SSC

Figure 4: Clustering validity indexes for a WM-optimal partition

A WM-optimal partition with k = 3 clusters shows global distribution of seismic
activities in a wider area of the Republic of Croatia. Centers of their clusters are situated
in the neighborhood of the following locations (see also Fig. 5a):

Mostar (Bosnia and Herzegovina) (λ = 17.80, φ = 43.34) c⋆
1 = (18.23, 43.12)

San Benedetto del Tronto (Italy) (λ = 13.87, φ = 42.96) c⋆
2 = (14.60, 42.99)

Ljubljana (Slovenia) (λ = 14.50, φ = 46.05) c⋆
3 = (14.53, 45.90)
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(a) k=3

13 14 15 16 17 18 19 20
42

43

44

45

46

47

(b) k=13

Figure 5: WM-optimal partitions

A WM-optimal partition with k = 13 clusters points out at 13 locations in which the
most intense seismic activity in the observed area can be expected (see Fig. 5b). Cen-
ters of these clusters and locations with a geographical position closest to these clusters
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are shown in Table 4. The number of all earthquakes Nall and the number N5 of cor-
responding stronger earthquakes (Mi ≥ 5) for each cluster are also shown in the table
previously mentioned. The most intense seismic activity appears in clusters with centers
near Metković (17.64, 43.05), Podgorica (19.26, 42.44), and Udine (13.23, 46.07). If the
databases with longer time period were used, it could be expected that the results are
more realistic.

k WM-centers N5/Nall Location Position

1 (17.73, 43.04) 11/400 Metković (HR) (17.64, 43.05)
2 (14.50, 45.24) 2/152 Rijeka (HR) (14.44, 45.32)
3 (15.26, 45.94) 2/200 Novo mesto (SLO) (15.17, 45.80)
4 (13.56, 43.36) 3/165 Recanati (IT) (13.54, 43.40)
5 (17.63, 44.61) 4/175 Banja Luka (BiH) (17.18, 44.76)
6 (19.37, 42.30) 11/462 Podgorica (Montenegro) (19.26, 42.44)
7 (15.45, 43.23) 3/450 Šibenik (HR) (15.89, 43.73)
8 (13.30, 42.59) 7/258 L’Aquila (IT) (13.39, 42.34)
9 (16.65, 43.85) 6/272 Sinj (HR) (16.63, 43.70)

10 (13.38, 46.25) 20/329 Udine (IT) (13.23, 46.07)
11 (17.11, 46.09) 2/60 Koprivnica (HR) (16.83, 46.16)
12 (19.02, 43.41) 1/159 Goražde (BiH) (18.98, 43.66)
13 (16.04, 42.32) 1/102 Rodi Garganico (IT) (15.88, 41.92)

Table 4: Cluster centers of a WM-optimal partition with 13 clusters

It is also interesting to analyze the geometric position of WM-optimal cluster centers
c⋆

1, . . . , c⋆
13. Let K(c0, ρ) = {x ∈ R2 : dM(c0, x) = ρ} be a Mahalanobis circle (M-circle)

with radius ρ and centre c0 and let {xi ∈ R2 : i = 1, . . . , s} be a given set of points in the
plane. The optimal M-circle can be determined (Nievergelt, 2002) by solving the global
optimization problem

argmin
c0,ρ

G(c0, ρ), G(c0, ρ) =
s∑

i=1
|dM(c0, xi) − ρ|.

Hence, for points c⋆
5, c⋆

7, c⋆
9, c⋆

13 we get an M-circle K1((18.53, 42.65), 2.11), and for points

÷÷

14 15 16 17 18 19 20

43

44

45

46

47

Nikšić

Figure 6: Geometric position of WM-optimal cluster centers



15

c⋆
2, c⋆

3, c⋆
4, c⋆

8, c⋆
11 an M-circle K2((18.39, 42.79), 5.51) (see Fig. 6). It is interesting to notice

that the centers of M-circles K1, K2 almost coincide (dM the distance of their centers
is 0.1) near Nikšić (Montenegro) with geographical position (18.94, 42.77), and in the
observed period (1973-2012) in the close vicinity of that place (dM away from Nikšić for
0.25 at most) there have been more than 80 earthquakes of magnitude greater than 4, out
of which 17 earthquakes had a magnitude greater than 5.

It is possible to carry out an additional necessary analysis for each cluster, that is,
we can observe occurrence of earthquakes in some cluster in the whole period of time
or analyze locations and intensity of these processes just in some selected time interval,
etc. Similarly, in (Borghi et al., 2009), GPS monitoring and earthquake prediction for the
cluster with the center near Udine (Italy) is investigated.

Identified centers of the most intense seismic activity in the observed area confirm
the results obtained in other ways (Ivančić et al., 2006; Stipčević et al., 2011), and the
proposed method can be used in the work of other researchers as in (Adelfio et al., 2012;
Colombo et al., 1997; Morales-Esteban et al., 2010).

5 Conclusion
The problem of determining an optimal partition of the set A ⊂ Rn is a complex global
optimization problem. Therefore, in recent literature special emphasis is put on construc-
tion of an efficient algorithm of searching for a partition which is as close to the optimal
one as possible. The algorithm proposed in this paper is a generalization of already known
incremental algorithms of searching for an optimal partition able to find either a glob-
ally optimal partition or a locally optimal partition close to the global one. Thereby, in
each iteration a well-known DIRECT algorithm for global optimization and the k-means
algorithm are combined. We should point out high efficiency of the proposed algorithm
which requires significantly shorter CPU-time than other incremental algorithms. Since
optimal partitions with 2, 3, . . . clusters are determined successively, another advantage of
the proposed algorithm is the possibility of proposing an appropriate number of clusters
in a partition by calculating corresponding clustering validity indexes.

It has been shown that a complex problem of detecting seismic activity centers can be
efficiently solved by using the proposed algorithm. The results obtained in such way can
be useful for further analysis and prediction of seismic activity (Morales-Esteban et al.,
2010). In addition to that, the proposed algorithm could be used very efficiently in other
complex applications as well.
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